Change-point detection in exponential families

Olivier Lopez ${ }^{(1)}$, Vladimir Spokoiny (2)

(1) LSTA Université Paris VI, (2) WIAS, Berlin

Colloque Franco-Roumain, Poitiers 30 août 2010

Introduction 1/3

Change-point model

Observations : $\left(Y_{i}\right)_{1 \leq i \leq n}$ independent random variables with law $\mathbb{P}_{V_{i}}$, where

$$
v_{i}=v+a^{*} \mathbf{1}_{i \leq \tau^{*}},
$$

with $a^{*} \in \mathcal{A}$, and $\tau^{*} \in\{0, \ldots, n\}$.

- We assume that $v \in \mathbb{R}$ is known.

Introduction 1/3

Change-point model

Observations : $\left(Y_{i}\right)_{1 \leq i \leq n}$ independent random variables with law $\mathbb{P}_{v_{i}}$, where

$$
v_{i}=v+a^{*} \mathbf{1}_{i \leq \tau^{*}}
$$

with $a^{*} \in \mathcal{A}$, and $\tau^{*} \in\{0, \ldots, n\}$.

- We assume that $v \in \mathbb{R}$ is known.
- Aim : estimation of $\theta^{*}=\left(a^{*}, \tau^{*}\right)$.

Introduction 1/3

Change-point model

Observations : $\left(Y_{i}\right)_{1 \leq i \leq n}$ independent random variables with law $\mathbb{P}_{V_{i}}$, where

$$
v_{i}=v+a^{*} \mathbf{1}_{i \leq \tau^{*}},
$$

with $a^{*} \in \mathcal{A}$, and $\tau^{*} \in\{0, \ldots, n\}$.

- We assume that $v \in \mathbb{R}$ is known.
- Aim : estimation of $\theta^{*}=\left(a^{*}, \tau^{*}\right)$.
- Identification problem: cases where $\tau^{*}=0, a^{*}=0$. The set of parameters is $\theta \in\left(\mathbb{R}^{*+} \times\{1, \ldots, n\}\right) \cup\{(0,0)\}$.

Introduction 2/3

Example 1

- $Y_{i}=$ number of claims during time period i.
- Classical model : Poisson random variable with mean λ.
- $\tau^{*}=$ change of behavior of insured people, the mean number of claims becomes $\lambda+\mu$.

Introduction 2/3

Example 1

- $Y_{i}=$ number of claims during time period i.
- Classical model : Poisson random variable with mean λ.
- $\tau^{*}=$ change of behavior of insured people, the mean number of claims becomes $\lambda+\mu$.

Exemple 2

- $Y_{i}=$ amount of the i-th claim.
- Classical model : Pareto.
- $\tau^{*}=$ time after which this model is not adapted anymore.

Introduction 3/3

- Some asymptotic results on change-point :
- Csörgo, Horvath (1997)
- Haccou, Meelis, Van de Geer (1987)

Introduction 3/3

- Some asymptotic results on change-point :
- Csörgo, Horvath (1997)
- Haccou, Meelis, Van de Geer (1987)
- For finite sample size in the Gaussian case :
- Golubev, Spokoiny (2009)
exponential family.

Introduction 3/3

- Some asymptotic results on change-point :
- Csörgo, Horvath (1997)
- Haccou, Meelis, Van de Geer (1987)
- For finite sample size in the Gaussian case :
- Golubev, Spokoiny (2009)
- Aim : extend these results to the case of a canonical exponential family.

Outline

(1) Case where a^{*} is known

- Maximum likelihood estimation
- Obtained results
(2) Case where a^{*} is unknown
- Comparison with the Gaussian case
- Exponential bounds for a random field
- Geometric problem
- Obtained results

Outline

(1) Case where a^{*} is known

- Maximum likelihood estimation
- Obtained results

2 Case where a^{*} is unknown

- Comparison with the Gaussian case
- Exponential bounds for a random field
- Geometric problem
- Obtained results

Likelihood expression

- Density of \mathbb{P}_{a} with respect to a dominating measure μ :

$$
p(y) \exp (y a-d(a))
$$

with $d C^{2}$ with $d^{\prime \prime}>0$.

- Without loss of generality, $v=0, d(0)=d^{\prime}(0)=0$, change-point model becomes

$$
v_{i}=a^{*} \mathbf{1}_{i \leq \tau^{*}} .
$$

Likelihood expression

- Density of \mathbb{P}_{a} with respect to a dominating measure μ :

$$
p(y) \exp (y a-d(a))
$$

with $d C^{2}$ with $d^{\prime \prime}>0$.

- Without loss of generality, $v=0, d(0)=d^{\prime}(0)=0$, change-point model becomes

$$
v_{i}=a^{*} \boldsymbol{1}_{i \leq \tau^{*}}
$$

- Log-likelihood expression :

$$
L(\tau)=a^{*} \sum_{i=1}^{\tau} Y_{i}-\tau d\left(a^{*}\right)
$$

The Maximum Likelihood Estimator maximizes

$$
L\left(\tau, \tau^{*}\right)=L(\tau)-L\left(\tau^{*}\right)
$$

Obtained results

Main result

- Let $\mathfrak{M}\left(\tau, \tau^{*}\right)=-\log E\left[\exp \left(1 / 2 L\left(\tau, \tau^{*}\right)\right)\right]$.

Theorem (Case where a^{*} is known)

We have

$$
\mathfrak{O}(\alpha)=E\left[\sup _{\tau} \exp \left(1 / 2 L\left(\tau, \tau^{*}\right)+\alpha \mathfrak{M}\left(\tau, \tau^{*}\right)\right)\right] \leq C
$$

where C only depends of $\sup _{a \in\left[0, a^{*}\right]} d^{\prime \prime}(a)$, and $\alpha<1$.

- Proof : Doob's inequality, or results of Golubev and Spokoiny (2009),

Main result

- Let $\mathfrak{M}\left(\tau, \tau^{*}\right)=-\log E\left[\exp \left(1 / 2 L\left(\tau, \tau^{*}\right)\right)\right]$.

Theorem (Case where a^{*} is known)

We have

$$
\mathfrak{O}(\alpha)=E\left[\sup _{\tau} \exp \left(1 / 2 L\left(\tau, \tau^{*}\right)+\alpha \mathfrak{M}\left(\tau, \tau^{*}\right)\right)\right] \leq C,
$$

where C only depends of $\sup _{a \in\left[0, a^{*}\right]} d^{\prime \prime}(a)$, and $\alpha<1$.

- Proof : Doob's inequality, or results of Golubev and Spokoiny (2009).

Two corollaries

- Let $\hat{\tau}$ be the maximum likelihood estimator,

$$
E\left[\exp \left(\alpha \mathfrak{M}\left(\hat{\tau}, \tau^{*}\right)\right)\right] \leq E\left[\exp \left(1 / 2 L\left(\hat{\tau}, \tau^{*}\right)+\alpha \mathfrak{M}\left(\hat{\tau}, \tau^{*}\right)\right)\right] \leq \mathfrak{O}(\alpha)
$$

Corollary (Estimation quality)

We have

$$
E\left[\mathfrak{M}\left(\hat{\tau}, \tau^{*}\right)\right] \leq \tilde{C} .
$$

Obtained results

Two corollaries

- Let $\hat{\tau}$ be the maximum likelihood estimator,

$$
E\left[\exp \left(\alpha \mathfrak{M}\left(\hat{\tau}, \tau^{*}\right)\right)\right] \leq E\left[\exp \left(1 / 2 L\left(\hat{\tau}, \tau^{*}\right)+\alpha \mathfrak{M}\left(\hat{\tau}, \tau^{*}\right)\right)\right] \leq \mathfrak{O}(\alpha)
$$

Corollary (Estimation quality)

We have

$$
E\left[\mathfrak{M}\left(\hat{\tau}, \tau^{*}\right)\right] \leq \tilde{C} .
$$

Corollary (Confidence intervals)
Let $\mathcal{A}(z)=\{\tau: L(\hat{\tau}, \tau) \leq z\}$. We have

$$
\mathbb{P}\left(\tau^{*} \notin \mathcal{A}(z)\right) \leq \mathfrak{O}(0) \exp (-z / 2)
$$

Outline

Case where a^{*} is known

- Maximum likelihood estimation
- Obtained results
(2) Case where a^{*} is unknown
- Comparison with the Gaussian case
- Exponential bounds for a random field
- Geometric problem
- Obtained results

Comparison with the Gaussian case

Estimation of a^{*}

- With τ fixed, the likelihood $L(a, \tau)$ is maximum for

$$
\hat{\mathbf{a}}(\tau)=d^{\prime-1}\left(\frac{1}{\tau} \sum_{i=1}^{\tau} Y_{i}\right) .
$$

- Gaussian case
maximizes
- Non-Gaussian case

Comparison with the Gaussian case

Estimation of a^{*}

- With τ fixed, the likelihood $L(a, \tau)$ is maximum for

$$
\hat{a}(\tau)=d^{\prime-1}\left(\frac{1}{\tau} \sum_{i=1}^{\tau} Y_{i}\right)
$$

- Gaussian case : $\hat{a}(\tau)=\tau^{-1} \sum_{i=1}^{\tau} Y_{i}$. The MLE $\hat{\tau}$ maximizes

$$
\tilde{L}(\tau)=\left(\frac{1}{\tau^{1 / 2}} \sum_{i=1}^{\tau} Y_{i}\right)^{2}
$$

- Non-Gaussian case

Comparison with the Gaussian case

Estimation of a^{*}

- With τ fixed, the likelihood $L(a, \tau)$ is maximum for

$$
\hat{a}(\tau)=d^{\prime-1}\left(\frac{1}{\tau} \sum_{i=1}^{\tau} Y_{i}\right)
$$

- Gaussian case : $\hat{a}(\tau)=\tau^{-1} \sum_{i=1}^{\tau} Y_{i}$. The MLE $\hat{\tau}$ maximizes

$$
\tilde{L}(\tau)=\left(\frac{1}{\tau^{1 / 2}} \sum_{i=1}^{\tau} Y_{i}\right)^{2}
$$

- Non-Gaussian case :

$$
\tilde{L}(\tau)=d^{\prime-1}\left(\tau^{-1} \sum_{i=1}^{\tau} Y_{i}\right) \sum_{i=1}^{\tau} Y_{i}-\tau d\left(d^{\prime-1}\left(\tau^{-1} \sum_{i=1}^{\tau} Y_{i}\right)\right)
$$

Comparison with the Gaussian case

Estimation of a^{*}

- With τ fixed, the likelihood $L(a, \tau)$ is maximum for

$$
\hat{a}(\tau)=d^{\prime-1}\left(\frac{1}{\tau} \sum_{i=1}^{\tau} Y_{i}\right)
$$

- Gaussian case : $\hat{a}(\tau)=\tau^{-1} \sum_{i=1}^{\tau} Y_{i}$. The MLE $\hat{\tau}$ maximizes

$$
\tilde{L}(\tau)=\left(\frac{1}{\tau^{1 / 2}} \sum_{i=1}^{\tau} Y_{i}\right)^{2}
$$

- Non-Gaussian case :

$$
\tilde{L}(\tau)=d^{\prime-1}\left(\tau^{-1} \sum_{i=1}^{\tau} Y_{i}\right) \sum_{i=1}^{\tau} Y_{i}-\tau d\left(d^{\prime-1}\left(\tau^{-1} \sum_{i=1}^{\tau} Y_{i}\right)\right)
$$

- Conclusion : Difficult to separate a and τ.

Exponential bounds for a random field

Result of Golubev et Spokoiny (2009)

- Let $\mathfrak{d}\left(a, \tau, a^{\prime}, \tau^{\prime}\right)$ be a metric such as, if

$$
B(\varepsilon, a, \tau)=\left\{\left(a^{\prime}, \tau^{\prime}\right): \mathfrak{d}\left(a, \tau, a^{\prime}, \tau^{\prime}\right) \leq \varepsilon\right\},
$$

$$
E\left[\sup _{\left(a^{\prime}, \tau^{\prime}\right) \in B(\varepsilon, a, \tau)} \exp \left(2 \lambda \frac{L\left(a, \tau, a^{\prime}, \tau^{\prime}\right)-E L\left(a, \tau, a^{\prime}, \tau^{\prime}\right)}{\mathfrak{d}\left(a, \tau, a^{\prime}, \tau^{\prime}\right)}\right)\right] \leq 2 \nu_{0}^{2} \lambda^{2}
$$

Theorem

Let π be a σ-finite measure on the parameter space. Under conditions on the metric \mathfrak{J},

$$
\mathfrak{O}(\alpha)=E\left[\sup _{\mathbf{a}, \tau} \exp \left(1 / 2 L\left(a, \tau, a^{*}, \tau^{*}\right)+\alpha \mathfrak{M}\left(a, \tau, a^{*}, \tau^{*}\right)\right)\right] \leq C,
$$

où $\log C=C_{0}(\mathfrak{d})+\log \left(\int \frac{\exp \left(-\alpha M_{\varepsilon}\left(a, \tau, a^{*}, \tau^{*}\right)\right) d \pi(a, \tau)}{\pi(B(\varepsilon, a, \tau))}\right)$.

Geometric problem

Natural metric

- Gaussian case : $\mathfrak{d}\left(a, \tau, a^{\prime}, \tau^{\prime}\right)=\left(a-a^{\prime}\right)^{2} \tau+{a^{\prime}}^{2}\left(\tau^{\prime}-\tau\right)$, for $\tau^{\prime}>\tau$.
rectangle
tends to a set delimited by an
hyperbola
- Consequence : difficulties to control the local entropy. Necessity to adapt the result of Golubev and Spokoiny to the case of a basis of neighborhoods instead of using a metric.

Natural metric

- Gaussian case : $\mathfrak{d}\left(a, \tau, a^{\prime}, \tau^{\prime}\right)=\left(a-a^{\prime}\right)^{2} \tau+{a^{\prime}}^{2}\left(\tau^{\prime}-\tau\right)$, for $\tau^{\prime}>\tau$.
- abig ($a>\varepsilon / \tau^{1 / 2}$), we can approximate $B(\varepsilon, a, \tau)$ by a rectangle.
- a small $\left(a<\varepsilon / \tau^{1 / 2}\right)$: tends to a set delimited by an hyperbola.
metric.

Natural metric

- Gaussian case : $\mathfrak{d}\left(a, \tau, a^{\prime}, \tau^{\prime}\right)=\left(a-a^{\prime}\right)^{2} \tau+{a^{\prime}}^{2}\left(\tau^{\prime}-\tau\right)$, for $\tau^{\prime}>\tau$.
- a big ($a>\varepsilon / \tau^{1 / 2}$), we can approximate $B(\varepsilon, a, \tau)$ by a rectangle.
- a small $\left(a<\varepsilon / \tau^{1 / 2}\right)$: tends to a set delimited by an hyperbola.
- Consequence : difficulties to control the local entropy. Necessity to adapt the result of Golubev and Spokoiny to the case of a basis of neighborhoods instead of using a metric.

Obtained results

Result

The MLE satifsies

$$
E\left[\mathfrak{M}\left(\hat{\tau}, \hat{a}, \tau^{*}, a^{*}\right)\right] \leq C \log \log n .
$$

- Gaussian case
- Poisson case

Obtained results

Result

The MLE satifsies

$$
E\left[\mathfrak{M}\left(\hat{\tau}, \hat{a}, \tau^{*}, a^{*}\right)\right] \leq C \log \log n .
$$

- Gaussian case :

$$
E\left[a^{* 2} \tau^{*}\left|\hat{\tau}-\tau^{*}\right|\right] \leq C \sigma^{2} \log \log n
$$

- Poisson case :

$$
E\left[\tau^{*} \log ((\lambda+\mu) / \lambda)^{2}\left|\hat{\tau}-\tau^{*}\right|\right] \leq \frac{C \log \log n}{\lambda}
$$

Lower bound

Lower bound

Let $\mathfrak{R}=\inf _{\tilde{\theta}} \max _{\theta} E[\mathfrak{M}(\tilde{\theta}, \theta)]$. We have
$\mathfrak{R} \geq c_{0} \log \log n$.

- Proof : modification of Fano's Lemma from Birgé (2001).

Conclusion

- Extension to the case of a misspecified model is possible.
- Extension to the case of multiple change-point. - Extension to online detection.

Conclusion

- Extension to the case of a misspecified model is possible.
- Extension to the case of multiple change-point.
- Extension to online detection.

Conclusion

- Extension to the case of a misspecified model is possible.
- Extension to the case of multiple change-point.
- Extension to online detection.

