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Case where a∗ is known Case where a∗ is unknown

Introduction 1/3

Change-point model
Observations : (Yi)1≤i≤n independent random variables with
law Pvi , where

vi = v + a∗1i≤τ∗ ,

with a∗ ∈ A, and τ∗ ∈ {0, ...,n}.

We assume that v ∈ R is known.
Aim : estimation of θ∗ = (a∗, τ∗).
Identification problem : cases where τ∗ = 0, a∗ = 0. The
set of parameters is θ ∈ (R∗+ × {1, ...,n}) ∪ {(0,0)}.
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Example 1
Yi = number of claims during time period i .
Classical model : Poisson random variable with mean λ.
τ∗ = change of behavior of insured people, the mean
number of claims becomes λ+ µ.

Exemple 2
Yi = amount of the i−th claim.
Classical model : Pareto.
τ∗ = time after which this model is not adapted anymore.
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Some asymptotic results on change-point :
Csörgo, Horvath (1997)
Haccou, Meelis, Van de Geer (1987)

For finite sample size in the Gaussian case :
Golubev, Spokoiny (2009)

Aim : extend these results to the case of a canonical
exponential family.
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Maximum likelihood estimation

Likelihood expression

Density of Pa with respect to a dominating measure µ :

p(y) exp(ya− d(a)),

with d C2 with d ′′ > 0.
Without loss of generality, v = 0, d(0) = d ′(0) = 0,
change-point model becomes

vi = a∗1i≤τ∗ .

Log-likelihood expression :

L(τ) = a∗
τ∑

i=1

Yi − τd(a∗).

The Maximum Likelihood Estimator maximizes
L(τ, τ∗) = L(τ)− L(τ∗).
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Obtained results

Main result

Let M(τ, τ∗) = − log E [exp(1/2L(τ, τ∗))].

Theorem (Case where a∗ is known)
We have

O(α) = E
[
sup
τ

exp(1/2L(τ, τ∗) + αM(τ, τ∗))

]
≤ C,

where C only depends of supa∈[0,a∗] d ′′(a), and α < 1.

Proof : Doob’s inequality, or results of Golubev and
Spokoiny (2009).
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Obtained results

Two corollaries

Let τ̂ be the maximum likelihood estimator,

E [exp(αM(τ̂ , τ∗))] ≤ E [exp(1/2L(τ̂ , τ∗)+αM(τ̂ , τ∗))] ≤ O(α).

Corollary (Estimation quality)
We have

E [M(τ̂ , τ∗)] ≤ C̃.

Corollary (Confidence intervals)
Let A(z) = {τ : L(τ̂ , τ) ≤ z}. We have

P(τ∗ /∈ A(z)) ≤ O(0) exp(−z/2).
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Comparison with the Gaussian case

Estimation of a∗

With τ fixed, the likelihood L(a, τ) is maximum for

â(τ) = d ′−1

(
1
τ

τ∑
i=1

Yi

)
.

Gaussian case : â(τ) = τ−1∑τ
i=1 Yi . The MLE τ̂

maximizes

L̃(τ) =

(
1
τ1/2

τ∑
i=1

Yi

)2

.

Non-Gaussian case :

L̃(τ) = d ′−1(τ−1
τ∑

i=1

Yi)
τ∑

i=1

Yi − τd(d ′−1(τ−1
τ∑

i=1

Yi)).

Conclusion : Difficult to separate a and τ .
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Exponential bounds for a random field

Result of Golubev et Spokoiny (2009)

Let d(a, τ, a′, τ ′) be a metric such as, if
B(ε,a, τ) = {(a′, τ ′) : d(a, τ, a′, τ ′) ≤ ε},

E

[
sup

(a′,τ ′)∈B(ε,a,τ)
exp

(
2λ

L(a, τ, a′, τ ′)− EL(a, τ, a′, τ ′)
d(a, τ, a′, τ ′)

)]
≤ 2ν2

0λ
2.

Theorem
Let π be a σ−finite measure on the parameter space. Under
conditions on the metric d,

O(α) = E
[
sup
a,τ

exp(1/2L(a, τ, a∗, τ∗) + αM(a, τ, a∗, τ∗))
]
≤ C,

où log C = C0(d) + log
(∫ exp(−αMε(a,τ,a∗,τ∗))dπ(a,τ)

π(B(ε,a,τ))

)
.
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Geometric problem

Natural metric

Gaussian case : d(a, τ, a′, τ ′) = (a− a′)2τ + a′2(τ ′ − τ), for
τ ′ > τ.

a big (a > ε/τ1/2), we can approximate B(ε,a, τ) by a
rectangle.
a small (a < ε/τ1/2) : tends to a set delimited by an
hyperbola.
Consequence : difficulties to control the local entropy.
Necessity to adapt the result of Golubev and Spokoiny to
the case of a basis of neighborhoods instead of using a
metric.
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Obtained results

Result
The MLE satifsies

E [M(τ̂ , â, τ∗,a∗)] ≤ C log log n.

Gaussian case :

E
[
a∗2τ∗|τ̂ − τ∗|

]
≤ Cσ2 log log n.

Poisson case :

E
[
τ∗ log((λ+ µ)/λ)2|τ̂ − τ∗|

]
≤ C log log n

λ
.
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Obtained results

Lower bound

Lower bound

Let R = infθ̃ maxθ E
[
M(θ̃, θ)

]
. We have

R ≥ c0 log log n.

Proof : modification of Fano’s Lemma from Birgé (2001).
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Conclusion

Extension to the case of a misspecified model is possible.
Extension to the case of multiple change-point.
Extension to online detection.
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