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Introduction 1/3

Change-point model

Observations : (Yj)1<ij<n independent random variables with
law Py, where
Vi=V+ 3*1/§T*,

with a* € A, and 7* € {0, ..., n}.

@ We assume that v € R is known.
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Change-point model

Observations : (Yj)1<ij<n independent random variables with
law Py, where
Vi=V+ 3*11'9-*7

with a* € A, and 7* € {0, ..., n}.

@ We assume that v € R is known.

@ Aim : estimation of 6* = (a*, 7*).

@ Identification problem : cases where 7* = 0, a* = 0. The
set of parameters is § € (R** x {1,...,n}) U {(0,0)}.
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@ Y; = number of claims during time period /.

@ Classical model : Poisson random variable with mean \.

@ 7" = change of behavior of insured people, the mean
number of claims becomes \ + .
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@ Y; = number of claims during time period /.

@ Classical model : Poisson random variable with mean \.

Case where a* is unknown

@ 7" = change of behavior of insured people, the mean
number of claims becomes \ + .

@ Y; = amount of the i—th claim.
@ Classical model : Pareto.

@ 7* = time after which this model is not adapted anymore.

v




@ Some asymptotic results on change-point :
e Csodrgo, Horvath (1997)

e Haccou, Meelis, Van de Geer (1987)
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@ Some asymptotic results on change-point :
e Csodrgo, Horvath (1997)
e Haccou, Meelis, Van de Geer (1987)

@ For finite sample size in the Gaussian case :
o Golubev, Spokoiny (2009)
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Introduction 3/3

@ Some asymptotic results on change-point :
e Csodrgo, Horvath (1997)
e Haccou, Meelis, Van de Geer (1987)

@ For finite sample size in the Gaussian case :
o Golubev, Spokoiny (2009)

@ Aim : extend these results to the case of a canonical
exponential family.
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@ Obtained results
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Maximum likelihood estimation

Likelihood expression

@ Density of P; with respect to a dominating measure p :

p(y)exp(ya— d(a)),
with d C? with @’ > 0.
@ Without loss of generality, v =0, d(0) = d’(0) = 0,
change-point model becomes

Vi = a <7*-
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Maxi likelihood

Likelihood expression

@ Density of P; with respect to a dominating measure p :

p(y)exp(ya — d(a)),
with d C2 with @ > 0.

@ Without loss of generality, v =0, d(0) = d’(0) = 0,
change-point model becomes

Vi = a <7*-

@ Log-likelihood expression :
Lir)=a")_ Yi—rd(a).
i=1

The Maximum Likelihood Estimator maximizes
L(7,7*) = L(7) — L(7*).
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Obtained results

Main result

@ Let M(r,7") = —log E[exp(1/2L(T,7*))].

Theorem (Case where a* is known)
We have

O(a) = E |supexp(1/2L(r,7*) + aM(7, 7)) | < C,

where C only depends of SUp (g o1 d"(8), and v < 1.




Case where a* is known Case where a* is unknown
(o] le} 000000
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Main result

@ Let M(r,7") = —log E[exp(1/2L(T,7*))].

Theorem (Case where a* is known)
We have

O(a) = E |supexp(1/2L(r,7*) + aM(7, 7)) | < C,

where C only depends of SUp (g o1 d"(8), and v < 1.

@ Proof : Doob’s inequality, or results of Golubev and
Spokoiny (2009).
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Obtained results

Two corollaries

@ Let 7 be the maximum likelihood estimator,
E [exp(a9(7,7%))] < Elexp(1/2L(7, 7°)+aM(7,77))] < O(«).

Corollary (Estimation quality)

We have .
E (7, 7")] < C.
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Obtained results

Two corollaries

@ Let 7 be the maximum likelihood estimator,
E [exp(a9(7,7%))] < Elexp(1/2L(7, 7°)+aM(7,77))] < O(«).

Corollary (Estimation quality)

We have .
E (7, 7")] < C.

Corollary (Confidence intervals)
Let A(z) = {7 : L(7,7) < z}. We have

P(7* ¢ A(2)) < O(0) exp(—2/2).
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@ With 7 fixed, the likelihood L(a, 7) is maximum for

a(r) = o' (; 3 Y,-) .
i=1
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Comparison with the Gaussian case

Estimation of a*

@ With 7 fixed, the likelihood L(a, 7) is maximum for

e (1£)

@ Gaussian case : a(t) = 7' Y7, Y;. The MLE #

maximizes 5
- 1 <
=1
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Comparison with the Gaussian case

Estimation of a*
@ With 7 fixed, the likelihood L(a, 7) is maximum for

e (1£)

@ Gaussian case : a(t) = 7' Y7, Y;. The MLE #

maximizes 5
- 1 <
L(r) = <T1/2 ) Yi)
i=1

@ Non-Gaussian case :

L(r)=d" (=" ZT: Y) Z Y —rd(d™(r" ZT: Yi)
i=1 i=1 i=1
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Comparison with the Gaussian case

Estimation of a*

@ With 7 fixed, the likelihood L(a, 7) is maximum for

e (1£)

@ Gaussian case : a(t) = 7' Y7, Y;. The MLE #

maximizes 5
- 1 <
=1

@ Non-Gaussian case :
Lr)=d ' Y)Y Yi—rd(d™ (w1 V).
i=1 =1 i=1

@ Conclusion : Difficult to separate a and .
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Exponential bounds for a random field

Result of Golubev et Spokoiny (2009)

@ Leto(a,,d,7') be a metric such as, if
B(e,a,7) ={(d,7') :o(a,7,d,7") <¢},

AN /o
E sup exp 2)\L(a, T,a,T ) EL(av T,a,T ) < 2]/5)\2
(a',7")eB(e,a,T) D(a, T, 3’77")

Theorem

Let 7w be a o—finite measure on the parameter space. Under
conditions on the metric 0,

Oa)=E [sup exp(1/2L(a,r,a", ") + aM(a, 7, a*,r*))] <C,
a,t

ot'log C = Cy(d) + log <f exp(—amtigg,@i;gz))dn(a,T)) .



>

@ Gaussian case : d(a,7,d,7') = (a— &)1 + &%(+' — 1), for
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Geometric problem

Natural metric

@ Gaussian case : 9(a,7,d,7) = (a— &2 + &*(+' — 1), for
7' >

@ abig (a > ¢/7'/?), we can approximate B(e, a, ) by a
rectangle.

@ asmall (a < ¢/7'/?) : tends to a set delimited by an
hyperbola.
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Geometric problem

Natural metric

@ Gaussian case : 9(a,7,d,7) = (a— &2 + &*(+' — 1), for

> T

@ abig (a > ¢/7'/?), we can approximate B(e, a, ) by a
rectangle.

@ asmall (a < ¢/7'/?) : tends to a set delimited by an
hyperbola.

@ Consequence : difficulties to control the local entropy.
Necessity to adapt the result of Golubev and Spokoiny to
the case of a basis of neighborhoods instead of using a
metric.



The MLE satifsies

E (7, a,7,a")] < Cloglog n.
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Obtained results

Result
The MLE satifsies

E[Mm(7,a,7",a")] < Cloglog n.

@ Gaussian case :
E [a*zT*\? — T*|] < Co?loglog n.

@ Poisson case :

< Cloglogn‘

E |7 log((A -+ 1)/ N7 — 7] !



Let } = inf; maxy E [sm(é, 0)] . We have

R > cploglogn.

@ Proof : modification of Fano’s Lemma from Birgé (2001).



@ Extension to the case of a misspecified model is possible.
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@ Extension to the case of a misspecified model is possible.
@ Extension to the case of multiple change-point.
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Obtained results

Conclusion

@ Extension to the case of a misspecified model is possible.
@ Extension to the case of multiple change-point.
@ Extension to online detection.
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